
Minimizing Information Waste in FMRI Data Analysis

Gang Chen

Scientific and Statistical Computing Core
National Institute of Mental Health

National Institutes of Health
U.S.A.

August 20, 2024

Gang Chen (SSCC/NIMH/NIH) Minimizing Information Waste August 20, 2024 1 / 22



Big picture: common fMRI data analysis pipeline

scannerneural activity

experimental design BOLD preprocessing modeling result reporting

Data machine: 4 major components
⋆ design: type/quality of data collection
⋆ input: data preprocessing
⋆ device: models
⋆ output: result reporting

Intertwined components
⋆ output (results): ultimate focus
⋆ streamlined and interdisciplinary
⋆ somewhat disjointed in practice

Roles of statistics
⋆ statistics rules!
⋆ p-value is everything: colorbars, tables

what can be reported
which variables considered

How about auxiliary information?
⋆ previous studies
⋆ data structure/hierarchies
⋆ anatomical structure
⋆ causal relationships
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Big picture: common fMRI data analysis pipeline

scannerneural activity

experimental design BOLD preprocessing modeling result reporting

Experimental design
⋆ type: task, resting, naturalistic
⋆ participants, conditions, trials
⋆ power analysis: sample sizes?

Input - data quality: preprocessing
⋆ slice timing, motion, spatial alignment,

spatial smoothing, temporal scaling
⋆ quality control: data censoring (time

points, participants)
⋆ benefits vs harms?

Device - models: massive univariate
⋆ individual level: regression
⋆ population level: t-test, GLM,

AN(C))OVA, LME, ...
⋆ covariate selection, HRF assumption
⋆ challenge: multiple testing problem

Output - result reporting
⋆ stringency: controlling false positives
⋆ trade-off: info integrity vs digestibility
⋆ thresholding: decision vs estimation?
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Traditional framework: null hypothesis significance testing (NHST)

Null hypothesis (straw man) H0: zero effect (no involvement, no difference)
⋆ model construction: t-test, regression, GLM, AN(C)OVA, LME, ...
⋆ preset threshold: type I error or significance level α (e.g., magic number 0.05)
⋆ measuring surprise p: conditioning on H0, how unlikely would real data occur?
⋆ decision-making: gate-keeping process - p < α?

Various problems
⋆ arbitrary: God loves 0.06 nearly as much as 0.05
⋆ fully overlooking type II error
⋆ dichotomization

courtroom: innocent until proven guilty
scientific investigation: decision-making?
sole reliance on statistics: domain knowledge, prior information?
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Science is more than just statistics
Pitfalls of solely focusing on statistical evidence

⋆ stronger evidence ≠⇒ larger effect
⋆ equal evidence ≠⇒ equal effect
⋆ speed of light: p = 0.003?

A different framework
⋆ focus on estimation & uncertainty instead of decision-making
⋆ prior knowledge: causal relationships, previous studies

Chen et al, 2017. Is the statistic value all we should care about in neuroimaging? NeuroImage 147, 952–959

Gang Chen (SSCC/NIMH/NIH) Minimizing Information Waste August 20, 2024 5 / 22



Result reporting

scannerneural activity

experimental design BOLD preprocessing modeling result reporting

Reported results: dichotomization
⋆ lack of bilateral symmetry: real?
⋆ border: arbitrary? meaningful?
⋆ part of a region: partial involvement?

 0.1

-0.1

2 fundamental questions
⋆ research: decision-making process?
⋆ incorporate more information?

Root problem: modeling approach
⋆ mass univariate analysis

same model applied separately:
voxel, region, correlation

⋆ multiple testing problem
penalty: diluting statistical evidence
goal: family-wise error (FWE)
method: random field theory, Monte
Carlo simulations, permutations

⋆ ritualized procedure
surviving clusters at FWE of 0.05
critical reviewing process

Gang Chen (SSCC/NIMH/NIH) Minimizing Information Waste August 20, 2024 6 / 22



Massive univariate analysis
Popular modeling approach

⋆ intuitive & computationally economical

1st voxel: y1 = a1 + b1x+ ϵ1

2nd voxel: y2 = a2 + b2x+ ϵ2

...

m-th voxel: ym = am + bmx+ ϵm

ϵj ∼ N (0, σ2
j );

voxel j =1, 2, ...,m.

⋆ solutions for multiple testing -
penalization (e.g., diluting p-values)

random field theory
Monte Carlo simulations
permutations

Problems: massive univariate analysis
⋆ implicit assumption: no prior info
⋆ ignoring data hierarchy ⇒ info waste
⋆ band-aid method: adjustments for

multiple testing ⇒ excessive penalty
⋆ discrimination against small regions
⋆ ignoring auxiliary info

assumed real

Chen et al, 2020. Fighting or embracing multiplicity in neuroimaging? neighborhood leverage versus global calibration. NeuroImage
206, 116320
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Solution 1: highlight, but don’t hide

 0.1

-0.1

Taylor et al, 2023. Highlight results, don’t hide them: Enhance interpretation, reduce biases and improve reproducibility.
NeuroImage 274, 120138
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Solution 2: hierarchical modeling
Mass univariate approach: many models

1st voxel/region: y1 = a1 + b1x+ ϵ1

2nd voxel/region: y2 = a2 + b2x+ ϵ2

...

m-th voxel/region: ym = am + bmx+ ϵm

ϵj ∼ N (0, σ2
j );

voxel/region j = 1, 2, ...,m.

Hierarchical approach: a single model
⋆ implemented in AFNI program RBA

yij = a+ bxi + πi + αj + βjxi + ϵij ,

πi
iid∼ N (0, τ2); (αj , βj)

T ∼ N (0, Λ); ϵij
iid∼ N (0, σ2).

Chen et al, 2019. Handling Multiplicity in Neuroimaging through Bayesian Lenses with Multilevel Modeling. Neuroinformatics 17,

515–545
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Hierarchical modeling: an example

Data at population level
⋆ 124 individuals; explanatory variable:

behavior measure
⋆ effect of interest: association

Conventional mass univariate analysis
⋆ 2 clusters survived FWE adjustment

based on voxel-level p of 0.001

Hierarchical modeling
⋆ 21 regions
⋆ using RBA
⋆ full result reporting
⋆ model quality checks: PPC, LOOCV
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Covariate selection
Statistical modeling

⋆ One model for all effects?
step-up/down, statistical metrics (p-values, R2, information criteria)

⋆ Two goals
prediction: forecasting future responses
inference: estimating the impact of a predictor on response → causal effects
data are amnesic

An example: data structure for each participant
⋆ response variable: short-term memory (STM)
⋆ predictor: voxel-level gray matter density (GMD)
⋆ 5 covariates

2 between-individual factors: sex, APOE genotype
3 quantitative variables: age, weight, intracranial volume (ICV)

Questions
⋆ OK to switch predictor and response variable?
⋆ OK to include all covariates?
⋆ are all estimated effects interpretable?
⋆ could more variables have been collected: height, sleep data?
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Directed Acyclic Graph (DAG)

Express prior knowledge or hypothesized relations among variables with graphs
⋆ nodes: variables; arrows: directional influence
⋆ directed acyclic graph (DAG): a common language of graphical representation
⋆ jargon: causal path, front/back door, minimally sufficient set, ...

3 basic types
(A) confounder/fork (B) collider (C) mediator/pipe
(noncausal & open) (noncausal & closed) (causal & open)

X: height

C: sex

Y : weight X: sex

C: weight

Y : height X: sex

C: height

Y : weight

4 auxiliary types: covariate influences either predictor or response, but not both
(A) child/descendant (B) child/descendant (C) parent/ancestor (D) parent/ancestor

of predictor of response of predictor of response

X

C

Y X Y

C

X

C

Y X

C

Y
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Quiz
age/site relative to sex/task & BOLD?

sex

age

BOLD sex

age

BOLD

head size relative to sex & BOLD

sex

head size

BOLD

sex

head size

BOLD sex

head size

BOLD

slow drift relative to task & BOLD

task

slow drift

BOLD task

slow drift

BOLD

head motion relative to task & BOLD

task

task-
unrelated
sources

motion

estimated motion;
censoring

BOLD

Censoring: data points or participants?
Chen et al, 2024. Through the lens of causal inference: Decisions and pitfalls of covariate selection. Preprint
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Revisiting motivating example

Data structure for each adult participant
⋆ Response variable: short-term memory (STM)
⋆ Predictor: voxel-level gray matter density (GMD)
⋆ 5 covariates

2 between-individual factors: sex, APOE genotype
3 quantitative variables: age, weight, intracranial volume (ICV)

Addressing four questions
⋆ switch predictor and response variable?
⋆ include all covariates?
⋆ are all estimated effects interpretable?
⋆ could more variables have been

collected? height, sleep data?

Gang Chen (SSCC/NIMH/NIH) Minimizing Information Waste August 20, 2024 14 / 22



Summary: variable selection

DAGs for model selection
⋆ confounder: ✓; collider: ✗; mediator: !△
⋆ ancestors/descendants: only condition on ancestors of response

Suggestions
⋆ drawing DAGs

experiment planning & modeling
all (including latent) variables

⋆ modeling
each effect may require a separate model
centering, interactions, nonlinearity

⋆ reporting
state effects of interest
present DAGs when necessary: transparency
avoid listing all estimated effects from a model (table 2 fallacy)
avoiding dichotomization: highlight-but-not-hide
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BOLD response: standard approach

Canonical: shape-fixed HRF

⋆ h(t) = 5.7t5e−t/Γ(6)− 0.95t15e−t/Γ(16)
⋆ 2 phases: overshoot & undershoot
⋆ overshoot peaks @ 5s
⋆ overshoot / overall duration: 12 / 32s
⋆ undershoot depth: 9% of peak; no initial dip

Benefit in modeling: widely adopted
⋆ complexity reduction: 1D → 0D (peak height)
⋆ simplicity: one β per response/condition

Empirical BOLD response profile

⋆ 3 phases: initial dip, overshoot & undershoot
⋆ large variability (eg Handwerker et al 2004)

Issues with canonical HRF
⋆ seeing what one wanted to see
⋆ inflexible: maladaptive to shape variations
⋆ lost details: peak location, undershoot, ...
⋆ info loss: inaccuracies & distortion
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BOLD response: estimation approach

Estimating HDRs at individual level
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⋆ piece-wise linear splines: tents/sticks, FIR
3dDeconvolve -stim_times 1 stim.1D
‘TENT(2,16,8)’

⋆ estimated HDR: at sampled data points
⋆ shape info: sampled HDR vs 0D (scalar)
⋆ more accurate: data-driven
⋆ weaker assumption: pure morphology vs peak
⋆ challenging for trial-level modeling
⋆ complication: dealing with HDR samples
⋆ sporadically adopted in neuroimaging

Estimating HDRs at group level:
smooth splines
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⋆ nonlinear
⋆ smooth: penalization against roughness
⋆ implementation in AFNI: 3dMSS

Chen et al, 2023. BOLD Response is more than just magnitude: Improving detection sensitivity through capturing hemodynamic
profiles. NeuroImage 277, 120224
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Resting-state: how accurate are estimated correlations?
ontological relationships simulating correlation between two regions

neural
activity

interval
dynamics mediators noises

BOLD

!
? Rosetta

Stone

others ϵ1 others ϵ2BOLD.neural1 BOLD.neural2

BOLD1 BOLD2

region 1 region 2

ρ

r

rC rC

rCrC

rE

estimating correlations: in the presence of uncorrelated noise
⋆ underestimation (attenuation): Spearman (1904)

biased estimation due to the presence of mediators & noises
⋆ underestimation: ρ large ⇒ r < ρ

large estimated r rarely seen in literature; BWAS: challenging
⋆ spurious estimation: ρ = 0 ⇒ r > 0

GSR proponents?
⋆ extent of bias: depending on amount of non-neural signal, rc, re

denoising wouldn’t fully eradicate the issue
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resting-state: interpretability of correlation matrix

A) Correlations among 3 regions B) Possible causal relationships among 3 regions
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ambiguities: assuming accurate correlations
⋆ +/-correlation ⇏ excitatory/inhibitory info flow
⋆ large correlations ⇏ strong info flow
⋆ small correlations ⇏ weak info flow

graph analysis
⋆ nonlinearity, feedback, > 3 ROIs
⋆ thresholding
⋆ topology: hub, centrality,

efficiency, rich-club, ...
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Role of sample sizes

Chen, G, Taylor, PA, Haller, SP, Kircanski, K, Stoddard, J, Pine, DS, Leibenluft, E, Brotman, MA, Cox, RW, 2018. Intraclass
correlation: Improved modeling approaches and applications for neuroimaging. Human Brain Mapping 39, 1187–1206.
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Sample size considerations

Difficulty in estimating sample sizes
⋆ effect sizes usually not reported
⋆ results dichotomized at peak voxels
⋆ region-specific: substantial variability across regions
⋆ current power analysis analysis tools

solely focusing on participants
pacifiers?

Suggestions
⋆ gather information from literature
⋆ balance trial and participant samples

hyperbolic relationship: leveraging between the two in both efficiency and financial cost
⋆ Interactions

2-way interactions: at least a few times more samples than main effects (> 100)
3-way interactions: challenging (> 1000)
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Summary: fMRI data analysis pipeline

scannerneural activity

experimental design BOLD preprocessing modeling result reporting

Experimental design
⋆ proactively preventing modeling issues
⋆ participants vs trials
⋆ randomization: participants, conditions
⋆ jittering: inter-trial interval
⋆ scanning: space/time resolution
⋆ reducing head motion
⋆ covariate consideration

Preprocessing
⋆ no one-size-fits-all pipeline
⋆ quality control
⋆ benefits vs harms

Modeling
⋆ HDR estimation vs canonical HRF
⋆ data hierarchies
⋆ region-based vs voxel-wise
⋆ covariate selection: DAGs

Result reporting
⋆ highlight, but don’t hide
⋆ estimation vs decision
⋆ focus: effect magnitude & uncertainty
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