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Big picture: common fMRI data analysis pipeline

’ experimental design ‘ BOLD '—»’ preprocessing }—»’ modeling H result reporting
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@ Roles of statistics

* statistics rules!
* p-value is everything: colorbars, tables

o Data machine: 4 major components

*

design: type/quality of data collection
* input: data preprocessing

* device: models

* output: result reporting

o what can be reported
e which variables considered

. o How about auxiliary information?
o Intertwined components . .
* previous studies

* data structure/hierarchies
* anatomical structure
* causal relationships

* output (results): ultimate focus
* streamlined and interdisciplinary
* somewhat disjointed in practice
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Big picture: common fMRI data analysis pipeline

’ experimental design ‘ BOLD ’ preprocessing }—»’ modeling H result reporting
,,,,, N

e Experimental design @ Device - models: massive univariate
* type: task, resting, naturalistic * individual level: regression
* participants, conditions, trials * population level: t-test, GLM,
* power analysis: sample sizes? AN(C))OVA, LME, ...
* covariate selection, HRF assumption
o Input - data quality: preprocessing % challenge: multiple testing problem
* slice timing, motion, spatial alignment,
spatial smoothing, temporal scaling o Output - result reporting
* quality control: data censoring (time * stringency: controlling false positives
points, participants) * trade-off: info integrity vs digestibility
* benefits vs harms? * thresholding: decision vs estimation?
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Traditional framework: null hypothesis significance testing (NHST)

e Null hypothesis (straw man) Hy: zero effect (no involvement, no difference)
* model construction: t-test, regression, GLM, AN(C)OVA, LME, ...
* preset threshold: type I error or significance level « (e.g., magic number 0.05)
* measuring surprise p: conditioning on Hy, how unlikely would real data occur?
* decision-making: gate-keeping process - p < a?

@ Various problems HoTre  HyFalse

% arbitrary: God loves 0.06 nearly as much as 0.05 . ..

. eject Ho pe | Error
* fully overlooking type II error e e,
* dichotomization

Correct

e courtroom: innocent until proven guilty
o scientific investigation: decision-making?
@ sole reliance on statistics: domain knowledge, prior information?

Type Il Error
(false negative)

Fail to Reject Hy Correct
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Science is more than just statistics

o Pitfalls of solely focusing on statistical evidence

* stronger evidence =~ larger effect
* equal evidence =% equal effect
* speed of light: p = 0.003?

T T
-0.4 0.0 0.4 0.8 -0.4 0.0 0.4 0.8

o A different framework

* focus on estimation & uncertainty instead of decision-making
* prior knowledge: causal relationships, previous studies

Chen et al, 2017. Is the statistic value all we should care about in neuroimaging? Neurolmage 147, 952-959
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Result reporting
’ experimental design ‘ BOLD preprocessing H modeling P»’ result reporting

@ Reported results: dichotomization

* lack of bilateral symmetry: real? @ Root problem: modeling approach
* border: arbitrary? meaningful? * mass univariate analysis
* part of a region: partial involvement? o same model applied separately:

voxel, region, correlation
* multiple testing problem
e penalty: diluting statistical evidence
o goal: family-wise error (FWE)
o method: random field theory, Monte
Carlo simulations, permutations
* ritualized procedure
e 2 fundamental questions o surviving clusters at FWE of 0.05
* research: decision-making process? o critical reviewing process
* incorporate more information?
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Massive univariate analysis

e Popular modeling approach
* intuitive & computationally economical

1st voxel: y; =a1 +bhixz+ €
2nd voxel: y, = ag + box + €2

m-th voxel: y,, = am + b + €,
e; ~ N(0, 0]2-);

voxel 7 =1,2,...,m.

* solutions for multiple testing -
penalization (e.g., diluting p-values)
o random field theory
o Monte Carlo simulations
e permutations

@ Problems: massive univariate analysis
* implicit assumption: no prior info
* ignoring data hierarchy = info waste
* band-aid method: adjustments for
multiple testing = excessive penalty
* discrimination against small regions
* ignoring auxiliary info

assumed real

e —>+00

Density

0
Voxel values

Voxel values

Chen et al, 2020. Fighting or embracing multiplicity in neuroimaging? neighborhood leverage versus global calibration. Neurolmage

206, 116320
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Solution 1: highlight, but don’t hide

Taylor et al, 2023. Highlight results, don’t hide them: Enhance interpretation, reduce biases and improve reproducibility.
Neurolmage 274, 120138
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Solution 2: hierarchical modeling

o Mass univariate approach: many models

1st voxel /region: y; = a1 + b1z + €
2nd voxel /region: Yy, = ag + bax + €2

m-th voxel /region: y,,, = am + b + €
e; ~N(0, o3);

voxel /region j =1,2,...,m.

o Hierarchical approach: a single model
* implemented in AFNI program RBA
Yij = a+ bx; + m; + aj + 5j:ci + €4,
iid 2y, T . iid 2
TG (0, T ), (aj, ,8]) NN(O, A), €5 ~ (0, o )
Chen et al, 2019. Handling Multiplicity in Neuroimaging through Bayesian Lenses with Multilevel Modeling. Neuroinformatics 17,

515-545
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Hierarchical modeling: an example

e Data at population level

* 124 individuals; explanatory variable:
behavior measure
* effect of interest: association

o Conventional mass univariate analysis

* 2 clusters survived FWE adjustment
based on voxel-level p of 0.001

o Hierarchical modeling
* 21 regions
using RBA
full result reporting
model quality checks: PPC, LOOCV

*
*
*
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Covariate selection

o Statistical modeling
* One model for all effects?
o step-up/down, statistical metrics (p-values, R?, information criteria)
* Two goals
o prediction: forecasting future responses
o inference: estimating the impact of a predictor on response — causal effects
o data are amnesic

o An example: data structure for each participant
* response variable: short-term memory (STM)
* predictor: voxel-level gray matter density (GMD)
* 5 covariates
o 2 between-individual factors: sex, APOE genotype
e 3 quantitative variables: age, weight, intracranial volume (ICV)

o Questions
* OK to switch predictor and response variable?
* OK to include all covariates?
* are all estimated effects interpretable?
* could more variables have been collected: height, sleep data?

Gang Chen (SSCC/NIMH/NIH) Minimizing Information Waste August 20, 2024

11 /22



Directed Acyclic Graph (DAG)

o Express prior knowledge or hypothesized relations among variables with graphs

* nodes: variables; arrows: directional influence
* directed acyclic graph (DAG): a common language of graphical representation
* jargon: causal path, front/back door, minimally sufficient set, ...

@ 3 basic types

(A) confounder/fork (B) collider (C) mediator/pipe
(noncausal & open) (noncausal & closed) (causal & open)

’ X: height }b{ Y: weight ‘ ’ X: sex } ----- >’ Y: height ‘ ’ X: sex } ----- >’ Y: weight ‘

o 4 auxiliary types: covariate influences either predictor or response, but not both

(A) child/descendant (B) child/descendant (C) parent/ancestor (D) parent/ancestor
of predictor of response of predictor of response
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Quiz

age/site relative to sex/task & BOLD?

head size relative to sex & BOLD

head size

slow drift relative to task & BOLD

|task- | estimated motion;
| ) | .

i unrelated censoring

' sources !

Censoring: data points or participants?

Chen et al, 2024. Through the lens of causal inference: Decisions and pitfalls of covariate selection. Preprint

Gang Chen (SSCC/NIMH/NIH)

Minimizing Information Waste

August 20, 2024

13 /22



Revisiting motivating example

o Data structure for each adult participant

* Response variable: short-term memory (STM)
* Predictor: voxel-level gray matter density (GMD)
* b covariates
o 2 between-individual factors: sex, APOE genotype
o 3 quantitative variables: age, weight, intracranial volume (ICV)

o Addressing four questions
* switch predictor and response variable?
* include all covariates?
* are all estimated effects interpretable?
* could more variables have been
collected? height, sleep data?
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Summary: variable selection

o DAGs for model selection

* confounder: v/; collider: X; mediator: A

* ancestors/descendants: only condition on ancestors of response
@ Suggestions

* drawing DAGs

e experiment planning & modeling
e all (including latent) variables

* modeling

o each effect may require a separate model
o centering, interactions, nonlinearity

* reporting

o state effects of interest

o present DAGs when necessary: transparency

e avoid listing all estimated effects from a model (table 2 fallacy)
o avoiding dichotomization: highlight-but-not-hide
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BOLD response: standard approach

@ Canonical: shape-fixed HRF e Empirical BOLD response profile

1.00 overshoot: 3-6's
3 078 canonical hemodynamic
5 response function
;‘)o 50 %‘
3 8
Qo025 £
B
0004 e Mo AN -2
0 30 .
time(s) ] (e undershoot: 10 - 30 s
initial dip: 1-2's
h(t) = 5.7t5e~t /T(6) — 0.95t15¢~ /T'(16) time (s)

2 phases: overshoot & undershoot

overshoot peaks @ 5s

overshoot / overall duration: 12 / 32s
undershoot depth: 9% of peak; no initial dip

* 3 phases: initial dip, overshoot & undershoot
* large variability (eg Handwerker et al 2004)

* ook X o ot

_ _ ' o Issues with canonical HRF
o Benefit in modeling: widely adopted * seeing what one wanted to see

* complexity reduction: 1D — 0D (peak height)
* simplicity: one 8 per response/condition

* inflexible: maladaptive to shape variations
* lost details: peak location, undershoot, ...
* info loss: inaccuracies & distortion
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BOLD response: estimation approach

o Estimating HDRs at individual level o Estimating HDRs at group level:
oo smooth splines

10

signal intensity

5 o

0
time (s)

7 13
time x (seconds)

* piece-wise linear splines: tents/sticks, FIR
3dDeconvolve -stim _times 1 stim.1D o

“TENT(2,16,8)’

* estimated HDR: at sampled data points

* shape info: sampled HDR vs 0D (scalar) o J

* more accurate: data-driven 00 o 0 os . 10

+ weaker assumption: pure morphology vs peak .

* challenging for trial-level modeling * nonlinear

% complication: dealing with HDR samples * smooth: penalization against roughness
* sporadically adopted in neuroimaging * implementation in AFNI: 3dMSS

Chen et al, 2023. BOLD Response is more than just magnitude: Improving detection sensitivity through capturing hemodynamic
profiles. Neurolmage 277, 120224
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Resting-state: how accurate are estimated correlations?
ontological relationships simulating correlatlon between two reglons

L)\ Q\\k -

7 \Koak\\ &

‘h others €
Ui Vi ! ] | . Lo
rinterval ! neural o7 -------F-

|

I T
! dynamics | cactivity | oo -
|

o estimating correlations: in the presence of uncorrelated noise
* underestimation (attenuation): Spearman (1904)

@ biased estimation due to the presence of mediators & noises
* underestimation: p large = r < p
o large estimated r rarely seen in literature; BWAS: challenging
* spurious estimation: p=0=r >0
e GSR proponents?
* extent of bias: depending on amount of non-neural signal, r., r
e denoising wouldn’t fully eradicate the issue
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resting-state: interpretability of correlation matrix

A) Correlations among 3 regions B) Possible causal relationships among 3 regions

o graph analysis
* nonlinearity, feedback, > 3 ROIs
* thresholding
* topology: hub, centrality,
efficiency, rich-club, ...

e ambiguities: assuming accurate correlations

* -+ /-correlation # excitatory/inhibitory info flow
* large correlations #- strong info flow
* small correlations # weak info flow

Gang Chen (SSCC/NIMH/NIH) Minimizing Information Waste August 20, 2024 19 /22



Role of sample sizes

200

150
%)
.5 ~ 100 A
o
©
50 A
Number of participants 0 5 50 100 1%0 7'60

S

Chen, G, Taylor, PA, Haller, SP, Kircanski, K, Stoddard, J, Pine, DS, Leibenluft, E, Brotman, MA, Cox, RW, 2018. Intraclass
correlation: Improved modeling approaches and applications for neuroimaging. Human Brain Mapping 39, 1187-1206.
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Sample size considerations

o Difficulty in estimating sample sizes
* effect sizes usually not reported
results dichotomized at peak voxels

region-specific: substantial variability across regions
current power analysis analysis tools

e

e solely focusing on participants
e pacifiers?

o Suggestions

* gather information from literature
* balance trial and participant samples

@ hyperbolic relationship: leveraging between the two in both efficiency and financial cost
* Interactions

e 2-way interactions: at least a few times more samples than main effects (> 100)
e 3-way interactions: challenging (> 1000)
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Summary: fMRI data analysis pipeline
’ experimental design ‘ BOLD b—»’ preprocessing }—»’ modeling H result reporting
\ 7

o Experimental design

* proactively preventing modeling issues e Modeling

* partlclp'ants. VS trlals' . . * HDR estimation vs canonical HRF
* randomization: participants, conditions + data hierarchies

* jittering: inter-trial interval « region-based vs voxel-wise

* scanning: space/time resolution + covariate selection: DAGs

* reducing head motion

* covariate consideration

@ Result reporting
* highlight, but don’t hide
* estimation vs decision
* focus: effect magnitude & uncertainty

@ Preprocessing

* no one-size-fits-all pipeline
* quality control
* benefits vs harms
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