Anatomical and Functional Magnetic Resonance Imaging in Small Animal Models

Afonso C. Silva, Ph.D.

Cerebral Microcirculation Section Laboratory of Functional and Molecular Imaging NINDS - NIH

Advantages of Animal Models

- Comprehensive, multi-modal investigations
 - fMRI + Electrophysiology
 - fMRI + Optical Imaging
 - Pharmacological Manipulations
 - Genetics, etc.

Schölvinck et al. Proc Natl Acad Sci USA. 2010;107(22):10238-43

Schultz et al. Nat Methods. 2012;9(6):597-602

Pharmacological Inhibition of COX-2 Uncouples Hemodynamics from Neural Activity

Pharmacological Inhibition of Nitric Oxide Uncouples BOLD from CBF

CBF

Stefanovic et al. J Cereb Blood Flow Metab. 2007;27(4):741-54.

Genetic Manipulations: Optogenetics

Lee et al. Nature. 2010 Jun 10;465(7299):788-92

Kahn et al., J Neurosci. 2011 Oct 19;31(42

Advantages of Animal Models

- Technical
 - Ultra-High Field Magnets
 - up to 21T vertical
 - up to 17.6T horizontal
 - Stronger Gradients
 - Up to 1000 mT/m in 12 cm ID
 - Small FOV due to smaller brain size
 - Improved spatial resolution
 - Improved SNR with specialized RF coils

How to Do MRI/fMRI in Small Animals

- Two types of setup
 - Anesthetized Animals
 - Isoflurane (anatomic studies)
 - Chloralose (functional studies)
 - Propofol + Fentanyl (functional studies)
 - Awake
 - Anatomical or functional Studies
- Extensive Physiological Monitoring
 - Temperature
 - Blood Pressure and Heart Rate
 - Pulse oximetry
 - ETCO₂

Anatomical and Functional MRI in Conscious, Awake Marmosets

Individual / Helmet

State-of-the-Art Neuroimaging Techniques

• Embedded RF receiver arrays

Circuit Diagram

Embedded helmet array and preamps

Ch-1

Ch-2

In vivo SNR Maps

fMRI in Conscious, Awake Marmosets 250 x 250 x 1000 μm³

Daniel Papoti, Cecil Yen, Julie Mackel, Hellmut Merkle, Afonso Silva, in preparation

How to Stimulate Animals: Somatosensory Stimulation in Rat

Atlas: "The Rat Brain in Stereotaxic Coordinates", Paxinos & Watson, 1998

Reproducibility: BOLD and CBV Incidence Maps at 11.77

CBV

Keilholz et al, MRM 55:316–324 (2006)

Spatial Resolution: BOLD Functional Maps

Cross-Correlation

Percent Signal Changes

11.7T Gradient-Echo, 50 x 50 x 2000 µm³

Silva and Koretsky PNAS 99: 15182-15187 (2002)

Laminar Specificity of BOLD Signal Changes

Silva and Koretsky PNAS 99: 15182-15187 (2002)

BOLD and CBV Impulse Responses

20

15

Time(s)

25

30

10

5

0.2

0.0

-0.2

- α -chloralose anesthetized rat
- Electrical stimulation of the forepaw
- Stimulation parameters optimized by laser-Doppler flowmetry:
 - 2.0 mA; 3 Hz; 0.3 ms

Silva, Koretsky, Duyn, Magn Reson Med 57:1110-8, 2007

Parametric Maps: Time-to-Peak (TTP) & Full-Width at Half-Maximum (FWHM)

CBV Impulse Response Has Fast and Slow Components CBV Impulse Response

Variation of HDR with Stimulus Duration

Variation of the Peak Intensity with Stimulus Duration

BOLD, CBF and CBV Have Distinct Temporal Characteristics

Hirano, Stefanovic and Silva J Neurosci. 31(4):1440-7 2011

Robust fMRI Responses to Ultrashort Stimuli

Hirano, Stefanovic and Silva J Neurosci. 31(4):1440-7 2011

Hirano, Stefanovic and Silva J Neurosci. 31(4):1440-7 2011

Distinct Temporal Evolution of CBV HRF

Distinct Temporal Evolution of CBV HRF

High Resolution fMRI Shows Early Activation of Capillary Network

X. Yu et. al, Neuroimage 59(2):1451-60 2012

Marmoset (Callithryx Jacchus)

- Adult weight: 300-500 grams
- Life span: 12+ years
- Age at maturity: 18 months
- Age at 1st reproduction: 17-20 months
- Gestation: 144 days
- Number of offspring: 2+; every 6 months

Marmosets Retain the Primate Anatomical and Functional Brain Organization

Human

Macaque

Marmoset

http://www.brainmuseum.org/

G. Paxinos et al. The Marmoset Brain in Stereotaxic Coordinates, 2011

Web caret, Washington University St. Louis, MO, USA

Marmosets are Lissencephalic

fMRI

Optical Imaging

Electrophysiology

In-Helmet Embedded RF Coil Arrays

Circuit Diagram

Embedded helmet array and preamps

In vivo SNR Maps

fMRI in Conscious, Awake Marmosets 250 x 250 x 1000 μm³

Anatomical MRI of the Marmoset Brain

ex vivo DTI 150 µm³

in vivo T1w-MPRAGE 150 μm^3

State-of-the-Art Neuroimaging Techniques

• High Resolution Anatomical MRI

Sati et. al, Neuroimage. 2012 59(2):979-85

Anatomical "Clinical" MRI Protocol for Scanning Marmoset Brain

- Voxel size= 125 μm × 125 μm × 600 μm
- Whole brain coverage (54 coronal slices)
- Total acquisition time ≈1h 20min

Speeded-Up, Three Contrast for Detecting Brain Lesions in Marmoset Model of Experimental Autoimmune Encephalomyelitis (EAE)

 T_2

 T_1

- Voxel size= 150 μm × 150 μm × 600 μm
- Whole brain coverage (54 coronal slices)
- Total acquisition time ≈ 35 min

PD

T₁-Weighted MRI Reveals Cortical Myeloarchitecture

Cortical Myeloarchitecture Map

Voxel size 150 μm^3

Flattened View

Bock et al., J Neurosci Methods. 2009 185(1):15-22

Reproducible and Quantitative Myeloarchitecture

Region	Surface Area (mm ²)		Surface Area
	Left	Right	(%)
Cortex	1005 ± 21	1007 ± 34	100
V1	219 ± 12	222 ± 3	22
S1	28 ± 4	30 ± 4	3
MT	17 ± 3	19 ± 2	2
A1 and R	11 ± 3	11 ± 3	1
DM	8 ± 1	7 ± 1	1

- Agrees well with histological measures of areas:
 - V1: 200-205 mm²: Fritsches and Rosa 1996 JCN 372:264-82; Missler, Wolff 1993 JCN 333:53-67
 - MT: 14 mm²: Pessoa et al. 1992 Exp. Brain Res. 2: 459–462.
 - DM: no well defined borders.
- More than ¼ of the marmoset cortex dedicated to processing of visual information

fMRI Activation Regions Map Well onto Myeloarchitectonic Maps

Leg Stimulation: 1.5 mA, 0.3ms, 50 Hz

0.20

fMRI Activation Regions Map Well onto Myeloarchitectonic Maps

Forearm/Wrist Stimulation: 1.5 mA, 0.3ms, 50 Hz

fMRI Response Overlaid on Myeloarchitecture

More Widespread Spatial Extent of Functional Regions in Awake Marmosets

Responses throughout the somatosensory pathway significantly enhanced when compared to anesthetized subjects

Amplitude of BOLD HRF Significantly Enhanced at High Stimulus Frequencies in Awake Monkeys

BOLD HRF in Awake Marmosets Has Faster Times-to-Peak

Robust Activation of S1, S2 and Caudate

of pulses @ f = 64 Hz

Yoshiyuki Hirano, in preparation

CBV Response Has Shorter Onset Times

Yoshiyuki Hirano, in preparation

Hand Representation in Somatosensory Cortex

Cecil Yen, in preparation

Tonotopic Mapping in Marmoset Auditory Cortex

Time

Resting State Networks In Conscious Marmosets

Belcher J Neurosci. 2013 33(42):16796 –16804

In collaboration with David Leopold (NIMH)

Hung, Yen et al in preparation

8 – Channel embedded array for visual fMRI

CuFlon (Polyflon Inc., Norwalk, CT, USA)

> 2oz/ft² of copper deposited

>0.25 mm thick PTFE dieletric

Single element electric scheme

fMRI/ECoG during visual stimulation

C.-C. Hung et al Neuroimage in press 2015

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

Experimental paradigm for fMRI of Visual System

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

Typical behavior of awake marmoset to a stimulus block

Positive reinforcement

Infra-red eye-tracking

Visual Stimulus

C.-C. Hung et al J Neurosci. 2014 in press

Visual responses in cortical and sub-cortical areas

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

C.-C. Hung et al Neuroimage in press 2015

Face-selective patches along ventral visual pathway

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

Electrocorticography (ECoG)

- High density, multi-channel electrode arrays
- Implanted on surface of brain underneath dura
- Record LFPs, good spatial resolution
 - on the order of electrode separation. e.g. 1 mm)

ECoG measures event-related potentials

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

Time-frequency Analysis (An example site)

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

Spatial layout of the high-gamma responses

C.-C. Hung et al J Neurosci 2015 35(3):1160-72.

Good spatial correspondence between fMRI and ECoG in marmoset extrastriate visual pathway

A ECoG

B fMRI

C.-C. Hung et al J Neurosci 2015 35(3):1160-72

Conclusions

- Advantages of Animal Models
 - Allow comprehensive, multi-modal investigations
 - Can be Performed in State of the Art MRI Systems
 - High SNR, Spatial and Temporal Resolution
- Challenges
 - Use of *anesthesia* is a major confound for fMRI studies
 - Training of animals to perform specialized tasks can be quite challenging

Cerebral Microcirculation Unit

main.html

- **Research Fellow:**
 - Sang-Ho Choi
- Lab Technicians
 - Lisa Zhang
- Post-bac Fellows ۲
 - Jennifer Ciuchta
 - Calvin Kersbergen
- Past Associates:
 - Byeong-Teck Kang currently @ Gachon University of Medicine and Science, Korea

Postdoctoral Fellows

Alden Hung

Daniel Papoti

Jungeun Park

Cecil Yen

- Yoshiyuki Hirano currently @ Chiba university, Chiba, Japan
- Junjie V. Liu currently @ Dartmouth University, Hanover, USA
- Bojana Stefanovic currently @ University of Toronto, Canada
- Nicholas Bock currently @ McMaster University, Canada
- George Nascimento
 - currently @ UFRN, Natal, Brazil
- Fernando F. Paiva currently @ IFSC, USP, Sao Carlos, Brazil
- Renata F. Leoni currently @ FFCLRP, USP, Ribeirao Preto, Brazil

- Puifai Santisakultarm

