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FMRI? It's easy!
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General suggestions

« picture this experiment as your own
» decisions on processing were made by you (and your colleagues)
- hopefully before acquiring any data
> there is no single "correct" way to analyze data, just reasonable ways

+ focus on understanding the processing steps
> in light of your having chosen which steps to perform

« practice the good habit of reviewing results
» do the initial images look good?
» review each processing step along with data
» are the EPI and anat well aligned by the end?
» do the statistical results look reasonable?

« create scripts for any processing step
» they are a record of how data was processed
» easy to apply to any new subjects
» easy to repeat
.- expect to re-analyze everything (mistake, new decision, etc.)
- keep original data and all processing scripts



A sample Study

+ Speech Perception Task: Subjects were presented with
audiovisual speech that was presented in a predominantly auditory

or predominantly visual modality.

+ Adigital video system was used to capture auditory and visual

speech from a female speaker.
+ There were 2 types of stimulus conditions:

<)

(1) Auditory-Reliable

Example: Subjects can
clearly hear the word
“cat,” but the video of a
woman mouthing the
word is degraded.

(2) Visual-Reliable

Example: Subjects can
clearly see the video of a
woman mouthing the
word “cat,” but the audio
of the word is degraded.



% Experiment Design:

+ There were 3 runs in a scanning session.

+ Each run consisted of 10 blocked trials:

- 5 blocks contained Auditory-Reliable (Arel) stimuli, and
- 5 blocks contained Visual-Reliable (Vrel) stimuli.

+ Each block contained 10 trials of Arel stimuli OR 10 trials of Vrel
stimuli.

- Each block lasted for 20 seconds (1 second for stimulus
presentation, followed by a 1-second inter-stimulus interval).

+ Each baseline block consisted of a 10-second fixation point.
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Players in Experiment Design

® Design of the study
o Complexity: factors, levels, covariate, contrasts of interest, ...

o Design choices may limit statistical analysis options

Number of events per class (sample size for a regressor)
o The more the better (20+), but no magic number

Number of condition classes (regressors)

o Be parsimonious
®* HRF modeling
o Fixed shape, whatever fits the data, or other basis functions?
* Event arrangement
o How to design? How to define the ‘best’ design?
o Efficiency: achieve highest statistical power within fixed scanning time
® Inter-Stimulus Interval (ISI) and Stimulus Onset Asynchrony (SOA)
o ISI: from the end (offset) of an event to the beginning (onset) of the next
o SOA = stimulus duration + ISI



Players in Experiment Design

® Number of subjects (7)
o Important for group analysis: inter-subject vs. intra-subject variation
o Power (success to detect signal if present) roughly proportional to Yz
o Design type: block vs. event-related
o Recommended: 25+ for event-related

® Number of time points

o Important for individual subject analysis, but also group analysis when estimate

variance is considered
o Power proportional to VDF
o Limited by subject’ s tolerance in scanner: 30-90 min per session

® TR length

o Shorter TR yields more time points (and potentially more power), but
o Power improvement limited by weaker MR signal

o Usually limited by hardware considerations



Design Types

® Event-related design
o Modeling options
" Rigid - Prefixed shape: GAM(p, q) (instantaneous duration), BLOCK(d,p)
Reliable and low cost if the HRF is very close to the model
" Flexible - Whatever fits the data: deconvolution: TENT (b,c,n), CSPLIN(b,c,n)
Sensitive to HRF subtle changes across regions/conditions
High statistical cost; over-fitting; difficulty in group analysis
»  Middle ground - Vatious basis functions: SPMG1/2/3, SIN, POLY
® Block design
o Conditions with lasting durations of more than one TR
o Other terminologies: epoch, box-car
o Usually modeled with prefixed-shape HRF (BLOCK), but
" basis function (TENT) approach for flexible shapes

" multiple events for each block: can model amplitude attenuation

® Mixed design



Statistical Theory Of Level 1 Tests

® Reoression Model (GI.M)

o Y=XB+ g X: design matrix with regressors as columns

® General Linear testing
o Hypothesis Hy: ¢’ B = 0 with ¢ = vector (¢, ¢,, ..., ¢,) Of matrix

= r=¢" B /N[ X X) e MSE] (MSE: unknown but same across tests)
> Signal-to-noise ratio
> Effect vs. uncertainty

= \(¢" (X’X)'): normalized standard deviation of contrast ¢’/
> Scaling factor for uncertainty/unreliability/imprecision, and totally under our control
» Efficiency = 1/ \/[c’(X "X)1¢: Smaller norm. std. dev. = more efficient

4 . . .
> X X measures co-variation among regressors: Less correlated regressors — more efficient

and easier to tease apart regressors
" Goal: find a design (X) that renders low norm. std. dev. or less correlated regressors

" Assuming no temporal correlations in the residuals: real power might be slightly lower



Find an efficient design

o Eftficient design search used event-related type
o Block or mixed type is typically designed manually

o Most parameters (TR, number of subjects/conditions/runs/
sessions/time points, ...) are preset usually through other

considerations before design search
o There are many good designs
* Infinite possibilities
* Used to avoid undesirable designs (collinearity problem) more
than optimal one(s)

* A manual design might be approximately (if not equally) optimal
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Multiple Stimuli - Experiment Design

®* How many distinct stimuli do you need in each
class? Our rough recommendations:

« Short event-related designs: at least 25 events in
each stimulus class (spread across multiple imaging
runs) — and more is better

e Block designs: at least 5 blocks in each stimulus
class — 10 would be better

« While we're on the subject: How many subjects?

« Several independent studies agree that 20-25
subjects in each category are needed for highly
reliable results

« This number is more than has usually been the
custom in FMRI-based studies!!
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‘ Data Analysis Philosophy \

e Signal = Measurable response to stimulus
 Noise = Components of measurement that interfere
with detection of signal
o Statistical detection theory:
> Understand relationship between stimulus & signal
» Characterize noise statistically
» Can then devise methods to distinguish noise-only
measurements from signal+noise measurements,
and assess the methods’ reliability
» Methods and usefulness depend strongly on the
assumptions

o Some methods are more “robust” against erroneous
assumptions than others, but may be less sensitive
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Time Series Analysis on Voxel Data

® Most common forms of FMRI analysis involve
fitting an activation+BOLD model to each voxel’s
time series separately (“massively univariate” analysis)

» Some pre-processing steps do include inter-voxel
computations; e.qg.,
o Spatial smoothing to reduce noise
o Spatial registration to correct for subject motion

® Result of model fits is a set of parameters at each
voxel, estimated from that voxel's data

> e.d., activation amplitude (B), delay, shape
> “SPM” =statistical parametric map; e.g., B or tor F
® Further analysis steps operate on individual SPMs

* €.9., combining/contrasting data among subjects
o sometimes called “second level” or “meta” analysis
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Some Features of FMRI Voxel Time Series

* FMRI only measures changes due to neural “activity”

> Baseline level of signal in a voxel means little or
nothing about neural activity

> Also, baseline level tends to drift around slowly (100
s time scale or so; mostly from small subject motions)

® Therefore, an FMRI experiment must have at least 2
different neural conditions (“tasks” and/or “stimuli”)

> Then statistically test for differences in the MRI
signal level between conditions

> Many experiments: one condition is “rest/control”

® Baseline is modeled separately from activation
signals, and baseline model includes “rest” periods

. In AFNI, that is; in SPM, “rest” is modeled explicitly
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‘ Some Sample FMRI Data Time Series \

® First sample: Block-trial FMRI data

> “Activation” occurs over a sustained period of time
(say, 10 s or longer), usually from more than one
stimulation event, in rapid succession

» BOLD (hemodynamic) response accumulates from
multiple close-in-time neural activations and is large

» BOLD response is often visible in time series

> Noise magnitude about same as BOLD response
®* Next 2 slides: same brain voxel in 3 (of 9) EPI runs

> black curve (noisy) = data

> red curve (above data) = ideal model response

> blue curve (within data) = model fitted to data

» somatosensory task (finger being rubbed)
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model relgressor Same Voxel: Runs 1 and 2

/

o

Noise ~same size as Asignal

/

model fitted to data

Ko
L
1
/

Block-trials: 27 s “on” / 27 s “off”; TR=2.5 s; 130 time points/run
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dL#0
dS#0

yaw#0
pitch#0

roll#0

Arel#0

Vrel#0
Run#3Pol#1

Run#3Pol#0
Run#2Pol#1

Run#2Pol#0
Run#1Pol#1

Run#1Pol#0

/Users/ziad/CD/AFNI_d:
(13

Time
Rall: 96.30 Rall-motion: 3.83 Rall-roni: 1.00 Rviewed: 95.43

The fitted curve 1s a
weighted sum of the
regressors in the design
matrix X
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Same Voxel: Run 3 and Average of all 9

AUYAYAVATAUAY
AUAYAVATATAY

Activation amplitude & shape vary among blocks! Why???
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More Sample FMRI Data Time Series

® Second sample: Event-Related FMRI
> “Activation” occurs in single relatively brief intervals
> “Events” can be randomly or regularly spaced in
time
o If events are randomly spaced in time, signal model itself
looks noise-like (to the pitiful human eye)

» BOLD response to stimulus tends to be weaker,
since fewer nearby-in-time “activations” S
have overlapping signal changes
(hemodynamic responses)

® Next slide: Visual stimulation experiment

“Active” voxel shown in next inde||
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Two Voxel Time Series from Same Run

OO O X [B] AFNI 2.56c: ED/runs_temp/ED_r1_vr+orig & ED_rl1_vr@3+orig

1498
[+140]

l\‘\A"W."Jr\#" 1\Qr‘ /\H* /‘ “\ \/

\
correlation with ideal = 0.56
1358
O OO _ [B] AFNI 2.56c: ED/runs_temp/ED_r1_vr+orig & ED_rl1_vr@3+orig
1789
[+140]

=—0.01 | "' V VVVV

correlation with ideal

n'l'c SEN x. 198, index=112 walue=1703 at 224
') lL Y v 31 G id: 20|Scale: 1.9 pix/Sdatum | Mean: 1689.427
[ ArnTt BEE 14 0:135 Base: separate Sigma: 16.33249

Lesson: ER-FMRI activation is not obvious via casual inspection
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F diff
More Event-Related Data

e White curve = Data (first 136 TRs) Very good fit for ER data
* Yellow curve = Model fit (R2=50%) (R2=10-20% more usual).

o = Stimulus timing Noise is as big as BOLD!




24—

Hemodynamic Response Function (HRF)

®* HRF is the idealization of measurable FMRI signal
change responding to a single activation cycle (up

and down) from a stimulus in a voxel
W, ™ T T T T T T T T T T T T T T T T T T T

{80, - 1 | Response to brief
e 1 | activation (< 1 s):
gl 1 |- delay of 1-2 s

o0, -risetime of 4-5 s
0. . fall time of 4-6 s
2, - model equation:
- h(t) < t’e™"'c
o . h(t) is signal

0. change t seconds
fo. after activation
l’0. i 4. 6 & 7 & & 1011, A 17,18, 18 20, 21. 22,

1 Brief Activation (Event)

Time
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Linearity (Additivity) of HRF

®* Multiple activation cycles in a voxel, closer in time

than duration of HRF:

» Assume that overlapping responses add

{| * Linearity is a pretty
{| good assumption

1| * But not apparently
1| perfect — about 90%
1| correct

|| Nevertheless, is

|| widely taken to be

{| true and is the basis
1| for the “general linear
1| model” (GLM) in

1l FMRI analysis

3 Brief Activations

J
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Linearity and Extended Activation

® Extended activation, as in a block-trial experiment:

10, -

- HRF accumulates over its duration (= 10-12 s)

1/ Black curve =

ll response to a single
{| brief stimulus

1/ * Red curve =

1l activation intervals
1/* Green curve =

1l summed up HRFs

1/ from activations

1| » Block-trials have

1| larger BOLD signal
]| changes than event-

8.

]| related experiments

b 2 Lonqu«ctivations (Blocks)
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* FMRI signal model (in each voxel) |
IS taken as sum of the individual
trial HRFs (assumed equal)

» Stimulus timing is assumed
Known (or measured) « 22s

> Resulting time series (in blue) |
are called the convolution of the |
HRF with stimulus timing '

> Finding HRF = “deconvolution” | “
» AFNI code = 3dDeconvolve . 120 s
(or its daughter 3dREML£1i t)

* Real data starts at and
returns to a nonzero,
slowly drifting baseline

> Convolution models only the
FMRI signal changes ———————»
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Simple Regression Models

® Assume a fixed shape h(t) for the HRF

> e.g., h(t) = t88 exp(-1/0.547) [MS Cohen, 1997]

> Convolve with stimulus timing to get ideal response
(temporal pattern) »(z) = E h(t =T,) = sum of HRF copies

®* Assume a form for the basellne (data without activation)
> e.g., a+ bet for a constant plus a linear trend
® In each voxel, fit data Z(t) to a curve of the form
Z(t) =a+ bet+ Ber(t) < The signal model!
.- a, b, 3 are unknown values, in each voxel
. a, b are “nuisance” parameters

. B is amplitude of r(t) in data = “how much” BOLD

. In this model, each stimulus assumed to get same BOLD
response — in shape and in amplitude




—20—
Signal models: »(z)

Quartz 2

/Users/ziad/CD/AFNI_data6/afni/rall_X.xmat.1D
(13/14)
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0 200 400 600 800 Motion and Baseline are

T. °
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Simple Regression: Sample Fits

‘000 X| [A] AFNI 2.56¢: rvb/qqq/mean+orig & mean@1+orig Constant basel i ne: a

A /\ _ ) A
L WAL AT

\

1704.8
[+108.8]

1596
006606 X| [A] AFNI 2.56c: rvb/qqq/mean-+orig & mean@1 +orig
1704.8
[+108.8]
‘ ' ‘ [\
N A A
Y , /N Y\ \ ! /" \
V V v‘. \
1596
AXTAL 6 index=90 value=1635 at 226. 6667 - -
BVA © o e oS pinviaom e 150351 Quadratic baseline: a+bet+cet?

* Necessary baseline model complexity depends on duration
of continuous imaging — e.g., 1 parameter per =150 seconds




 Duration of Stimuli - Important Caveats

® Slow baseline drift (time scale 100 s and longer) makes
doing FMRI with long duration stimuli difficult

« Learning experiment: where the task is done
continuously for =15 minutes and the subject is
scanned to find parts of the brain that adapt during
this time interval

« Pharmaceutical challenge: where the subject is
given some psychoactive drug whose action plays
out over 10+ minutes (e.g., cocaine, ethanol)

® Multiple very short duration stimuli that are also very
close in time to each other are very hard to tell apart,
since their HRFs will have 90-95% overlap

« Binocular rivalry, where percept switches = 0.5 s
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Multiple Stimuli = Multiple Regressors

¢ Usually have more than one class of stimulus or
activation in an experiment

> e.g., want to see size of “face activation” vis-a-vis
“house activation”; or, “what” vs. “where” activity

®* Need to model each separate class of stimulus with a
separate response function r,(t), rs(t), ry(f), ...

> Each r(t) is based on the stimulus timing for activity
in class number

> Galculate a 3; amplitude = amount of r(f) in voxel
data time SerleS Z(t) = average BOLD for stlm class #/

> Contrast Bs to see which voxels have differential
activation levels under different stimulus conditions

o €.g., statistical test on the question B,—8,=0 ?
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Multiple Regressors: Near Collinearity

\

Stimuli are too close in time to distinguish
response #1 from #2, considering noise

~Red curve = signal

model for class #1

TeGreen curve =
| signal model for #2

Blue curve =
Bye#1+(1—B,)#2

Where (3, varies
randomly from 0.0
to 1.0 in animation
~Gray curve =
0.66°#1+0.33#2
= simulated data
with no noise
* Lots of different
combinations of #1
and #2 are decent

fits to gray curve
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Simple Regression: Recapitulation

®* Choose HRF model k(r) [AKA fixed-model regression]
® Build model responses r, () to each stimulus class
» Using h(f) and the stimulus timing
®* Choose baseline model time series
» Constant + linear + quadratic (+ movement?)

* Assemble model and baseline time series into the
columns of the R matrix

® For each voxel time series z, solve z=R[} for 8

* Individual subject maps: Test the coefficients in
that you care about for statistical significance

* Group maps: Transform the coefficients in B that
you care about to Talairach/MNI space, and perform
statistics on the collection of B values across subjects
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Motion, The Second Nuisance in FMRI
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Hardware Spike
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Hardware Spike
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e Spikes caused by loose gradient coil connection
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Weirder Spikes
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Welirder Spikes
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Motion Correction

« Within-modality: T2* to T2* or T1 to T1
— Least squares cost functional is simple and robust

— For EPI time series, rigid body (6 parameters) is
typically used.




Movement Corrected
Spikes remain
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Movement Corrected
Spikes remain
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Motion Correction

» Cross modality registration T1 to T2* for
example

— A variety of joint histogram based cost functionals

» Elegant and general purpose.
» But they can reach lowest cost at bad alignment

— We propose the use of Local Pearson Correlation for
an EPI to T1 cost functional
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Results: EP| Edges Atop Anatomical Slices

Y




Results: EP| Edges Atop Anatomical Slices

) O O X [Alu AFNL: ZiadEPl/examine_315_figure/_ae FURT_aff_corat nweorigd s ) 0) O X [AJu AFNL ZiadEPl/examine_315 figure/_aeAlline_aff_Ipc+orig & _ae.epi_




Stimulus Correlated Movement

* By accident

— Stimulus induced
* Could confound results

— Can happen in subtle ways as tensing up shoulders
or changing breathing depth

— Warning sign is stimulus-correlated signals on edge

of brain

 Careful consideration of stimulus timing can
reduce this problem

— Uncorrelated with Stimulus
« Adds variance to data, resulting in less power

* By design

— Speech production, swallowing, etc.




"Activation" Artifacts

R.M. Birn, et al. Human Brain Mapping 7(2), 106-114, 1999

overt speaking jaw clenching

 Non-BOLD signal changes correlated with task timing

Slide courtesy of R. Birn




Look at single subject results

Consider response to task
Multiple comparison corrections




Multi-Voxel
Statistics

Spatial Clustering

2
False Discovery Rate:

“Correcting” the Significance
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Basic Problem

® Usually have 50-200K FMRI voxels in the brain
®* Have to make at least one decision about each one:
- Is it “active”?
o That is, does its time series match the temporal pattern of
activity we expect?
- |s it differentially active?

o Thatis, is the BOLD signal change in task #1 different
from task #27?

® Statistical analysis is designed to control the error rate
of these decisions

- Making lots of decisions: hard to get perfection in
statistical testing
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Multiple Testing Corrections

* Two types of errors

What is H; in FMRI studies? H, = no effect (activation, difference, ...) at a voxel
Type | error = Prob(reject Hy when H is true) = false positive = p value

Type Il error = Prob(accept Hy when H, is true) = false negative = 8
power = 1- = probability of detecting true activation

Strategy: controlling type | error while increasing power (decreasing type |l errors)
Significance level a (magic number 0.05) : p< a

Justice System: Trial

Hidden Truth
Defendant Defendant
Innocent Guilty
Reject
Presumption of EERVZ/I-ME = ({e]¢
Innocence (defendant Correct

(Guilty Verdict) very unhappy)

Fail to Reject

Presumption of
Innocence (Not Correct
Guilty Verdict)

Type Il Error
(defendant

very happy)

Statistics: Hypothesis Test

Hidden Truth
Ho True H, False
Not Activated Activated
Rejgct Hy |
g:?i?xftic\j/;)xel © (Ia%ff JoE:;';\?;) Correct

Don’t Reject H,
(decide voxel isn’t Correct
activated)

Type Il Error
(false negative)
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* Family-Wise Error (FWE)

- Multiple testing problem: voxel-wise statistical analysis

o With N voxels, what is the chance to make a false positive error
(Type |) in one or more voxels?

Family-Wise Error: Qg = 1—(1-p)N =1 as Nincreases

o For Np small (compared to 1), Qg = Np
o N = 50,000+ voxels in the brain

o To keep probability of even one false positive Qg < 0.05 (the
“corrected” p-value), need to have p < 0.05/5x10% =107

o This constraint on the per-voxel (“uncorrected”) p-value is so stringent
that we would end up rejecting a lot of true positives (Type Il errors)
also, just to be safe on the Type | error rate

® Multiple testing problem in FMRI
= 3 occurrences of multiple tests: Individual, Group, and Conjunction

- Group analysis is the most severe situation (have the least data,
considered as number of independent samples = subjects)
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* Two Approaches to the “Curse of Multiple Comparisons”
- Control FWE to keep expected total number of false positives below 1
o Overall significance: Qg = Prob(= one false positive voxel in the whole brain)
o Bonferroni correction: a-,, = 1— (1-p)V = Np, if p << N~
- Use p=a/N as individual voxel significance level to achieve ag,, = a
- Too stringent and overly conservative: p=10738...107°
o What can rescue us from this hell of statistical super-conservatism?
- Correlation: Voxels in the brain are not independent
- Especially after we smooth them together!
- Means that Bonferroni correction is way way too stringent
- Contiguity: Structures in the brain activation map

- We are looking for activated “blobs”: the chance that pure noise (H,) will
give a set of seemingly-activated voxels next to each other is lower than
getting false positives that are scattered around far apart

= Control FWE based on spatial correlation (smoothness of image noise) and
minimum cluster size we are willing to accept

- Control false discovery rate (FDR) — Much more on this a little later!
o FDR = expected proportion of false positive voxels among all detected voxels
= Give up on the idea of having (almost) no false positives at all
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Why Group Analysis?

* Summarizing individual subject results

* Why not one analysis with a mega model for all subjects?

# Computationally unmanageable
? Heterogeneity in data or experiment design across subjects

* What is a valid summarizing method?

¢ Effect of subjecti = group etfect + deviation of subject 1
o A simple (one-sample ~test) model B;= b + €, £~ N(0, 09
¢ If individual effects are consistent across most or all subjects,
the deviations would be relatively small

¢ Significance measure = group effect relative to variability
« Student ¢-test as a simple illustration
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Unpaired 2 Sample t-Test: Cartoon Data

» Condition = some way to
categorize data (e.g., stimulus type,

1 X drug treatment, day of scanning,
Signal X X subject type, ...)
in Voxel, Y4 ose
in each +2SEM +pe X * SEM = Standard Error of the Mean
condition, X = standard deviation of sample
from 7 I 1 X divided by square root of number of
subjects =1 SEM $ ¢ 2 Ve samples
% fd X . L
(% change) ‘X 2. = estimate of uncertainty in sample
_2SEM .i. X mean
X
one data X e Unpaired t-test determines if
ng‘r:’;f"ffofn X sample means are “far apart”
one subject compared to size of SEM
in tihr:Str:/igxel Condition Condition « tstatistic is difference of
condition #1 #2 means divided by SEM

* Not significantly different!
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Paired t-Test: Cartoon Data

paired data
samples:
same numbers
as before « Paired means that samples in
A X different conditions should be linked
ggereeee together (e.g., from same subjects)
....... x A X
e 0 st « Test determines if differences
ignal | . et X XXX)()( between conditions in each pair are
Signal SV RRI :
X 2 “large” compared to SEM of the
Koo X differences
................. %4 paired _ ,
X differences | | * Paired test can detect systematic
................... X intra-subject differences that can be
x X hidden in inter-subject variations
x ............. | .
* Lesson: properly separating inter-
» i subject and intra-subject signal
Cor;d;t'on Co;dg on variations can be very important!

» Significantly different!
» Condition #2 > #1, per subject



Terminology: Fixed factor/effect - discrete variable

* Treated as a fixed variable (constant) in the model

> Categorization of conditions/tasks (modality: visual/auditory)

- Within-subject (repeated-measures) factor

> Subject-grouping: Group of subjects (gender, normal/patients)

. Between-subject factor
* All levels of a factor are of interest (house vs. face)
> main effect, contrasts among levels
* Fixed in the sense of statistical inferences
> apply only to the specific levels of the factor
> don’ t extend to other potential levels that might have been included

* Fixed effects may also include continuous variables (covariates)

> Of direct interest

> Improving statistical power by controlling for data variability
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* Terminology: Random factor/effect

# Random variable in the model: exclusively subject in FMRI
> average + effects uniquely attributable to each subject: e.g. N(u, 7?)
> Requires enough number of subjects

¢# Each individual subject effect is of NO interest

# Random in the sense
> subjects serve as a random sample (representation) from a population
> inferences can be generalized to a hypothetical population

* Fixed vs. random effects

# Conventional model B.= b + €, &~ N(0, 0%

¢ Linear mixed-effects model B;= b+ O, + &, &,~ N(0, T°), &~ N(0, 07
¢ b universal constant
¢ 8; each subject’s unique and consistent personality

v & random fluctuations in life
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Covariates

Confusing usage in literature
o May or may not be of direct interest

Direct interest: relation between response and the covariate
0 Is response proportional to response time?
Of no interest: confounding, nuisance, or interacting variables
0 Controlling for or covarying or partialling out: what does it mean?
0 Subtle issue in this case: centering
o Continuous or discrete
Continuous: historically originated from ANCOVA
I solely use it as a continuous variable to avoid confusion

Very careful when treating a discrete (categorical) variable as covariate
0 Dummy coding

0 Interaction



Covariate: Modeling framework

Most people learned covariate modeling with
ANCOVA

o Historical extension to ANOVA

0 Quite limited and not flexible

o Not a good approach in general

GLM or LME: broader context

o All explanatory variables are treated equally in the model

o Doesn’t matter: variable of interest or not, discrete or
continuous

o Discrimination or categorization occurs only at human
(not model) level



Handling covariates: one group

Model y, = o+ & ,x+ €, for ith subject: no other variables

a0 O, - slope (change rate, marginal etfect): etfect per unit ot x

Simple and straightforward: no manipulation needed

a0 o, —1intercept (x=0): group etfect while controlling x
Controlling is NOT good enough
Interpretability - & ;at what x value: mean or any other value?
Centering 1s crucial for interpretability

O Center does not have to be mean

effect = optoycc
when covariate is at center ¢

06 08 1.0
1 1 I

Effect

-02 00 02 04
I 1 1 1

effect = oy
|~ when covariate is at 0

0 O
AV
=\

. 1 1

I I I 1

0 50 Subject IQ100 15 150 0 Covariate ©
(A) (B)



Covarlates: two or more groups
Slope

0 Same or different across groups?

0 Usually we don’t know in advance

Start with different slopes — interaction between group and covariate
If same, then model tuning

Intercept: centering again

o Same or different center across groups?

How to decide? Plot out covariate distribution
If about the same, nice and easy!

If dramatically different, now what?

If possible, this issue should have been though of when
designing the experiment
You may balance covariate values (e.g. age) across groups
How about if it is not under your control (e.g., response time)?

o O 0O O



Covariates: different center across groups

Most statisticians (including in FMRI) consider it horrible

0 For example, Miller GM and Chapman [P. 'Misunderstanding analysis of
covariance', | Abnormal Psych 110: 40-48 (2001)
o SPM and FSL communities
0 It may well be the case
Groups were not balanced in experiment design: design failure!

E.g., males and females have different age distribution, and we can’t resolve: in
the end the group difference is due to sex or age difference?

0 But I beg to differ under other scenarios
Now stop and think!

What is the point of considering the covariate? Using RT as example, we can

account for within-group variability of RT, not variability across all subjects in
both groups

Do not center by default without careful forethought



Slope and intercept with two groups
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Most of these slides were taken from the AFNI bootcamp class

material.

For complete set of documentation and test data:
http://afni.nimh.nih.gov/pub/dist/ HOWTO/howto/ht00 inst/html/index.shtml
and
http://afni.nimh.nih.gov/pub/distt HOWTO/howto/ht00 inst/html/data _handouts.shtml




